Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Biol Med (Maywood) ; 249: 10114, 2024.
Article in English | MEDLINE | ID: mdl-38510492

ABSTRACT

Bunyamwera virus (BUNV) (Bunyamwera orthobunyavirus) has been found in Sub-Saharan Africa and demonstrated recently as cocirculating with Rift Valley Fever Virus (RVFV). Little is known regarding the breadth of transmission modalities of Bunyamwera. Given its co-occurence with RVFV, we hypothesized the transmission system of BUNV shared similarities to the RVFV system including transmission by Ae. aegypti mosquitoes and environmentally mediated transmission through fomites and environmental contamination. We exposed Ae. aegypti mosquitoes to BUNV and evaluated their ability to transmit both vertically and horizontally. Further, we investigated the potential for a novel transmission modality via environmental contamination. We found that the LSU colony of Ae. aegypti was not competent for the virus for either horizontal or vertical transmission; but, 20% of larva exposed to virus via contaminated aquatic habitat were positive. However, transstadial clearance of the virus was absolute. Finally, under simulated temperature conditions that matched peak transmission in Rwanda, we found that BUNV was stable in both whole blood and serum for up to 28 days at higher total volume in tubes at moderate quantities (103-5 genome copies/mL). In addition, infectiousness of these samples was demonstrated in 80% of the replicates. At lower volume samples (in plates), infectiousness was retained out to 6-8 days with a maximum infectious titer of 104 PFU/mL. Thus, the potential for contamination of the environment and/or transmission via contaminated fomites exists. Our findings have implications for biosafety and infection control, especially in the context of food animal production.


Subject(s)
Aedes , Bunyamwera virus , Rift Valley fever virus , Animals , Rift Valley fever virus/genetics
2.
Pathogens ; 12(11)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38003832

ABSTRACT

Temperature is a well-known effector of several transmission factors of mosquito-borne viruses, including within mosquito dynamics. These dynamics are often characterized by vector competence and the extrinsic incubation period (EIP). Vector competence is the intrinsic ability of a mosquito population to become infected with and transmit a virus, while EIP is the time it takes for the virus to reach the salivary glands and be expectorated following an infectious bloodmeal. Temperatures outside the optimal range act on life traits, decreasing transmission potential, while increasing temperature within the optimal range correlates to increasing vector competence and a decreased EIP. These relatively well-studied effects of other Aedes borne viruses (dengue and Zika) are used to make predictions about transmission efficiency, including the challenges presented by urban heat islands and climate change. However, the knowledge of temperature and chikungunya (CHIKV) dynamics within its two primary vectors-Ae. aegypti and Ae. albopictus-remains less characterized, even though CHIKV remains a virus of public-health importance. Here, we review the literature and summarize the state of the literature on CHIKV and temperature dependence of vector competence and EIP and use these data to demonstrate how the remaining knowledge gap might confound the ability to adequately predict and, thus, prepare for future outbreaks.

3.
PLoS Negl Trop Dis ; 16(10): e0010818, 2022 10.
Article in English | MEDLINE | ID: mdl-36194617

ABSTRACT

In models of mosquito-borne transmission, the mosquito biting rate is an influential parameter, and understanding the heterogeneity of the process of biting is important, as biting is usually assumed to be relatively homogeneous across individuals, with time-between-bites described by an exponentially distributed process. However, these assumptions have not been addressed through laboratory experimentation. We experimentally investigated the daily biting habits of Ae. aegypti at three temperatures (24°C, 28°C, and 32°C) and determined that there was individual heterogeneity in biting habits (number of bites, timing of bites, etc.). We further explored the consequences of biting heterogeneity using an individual-based model designed to examine whether a particular biting profile determines whether a mosquito is more or less likely to 1) become exposed given a single index case of dengue (DENV) and 2) transmit to a susceptible human individual. Our experimental results indicate that there is heterogeneity among individuals and among temperature treatments. We further show that this results in altered probabilities of transmission of DENV to and from individual mosquitoes based on biting profiles. While current model representation of biting may work under some conditions, it might not uniformly be the best fit for this process. Our data also confirm that biting is a non-monotonic process with temperatures around 28°C being optimum.


Subject(s)
Aedes , Dengue Virus , Dengue , Animals , Habits , Humans , Mosquito Vectors
4.
PLoS One ; 16(10): e0257302, 2021.
Article in English | MEDLINE | ID: mdl-34618831

ABSTRACT

BACKGROUND: In March 2020, an influx of admissions in COVID-19 positive patients threatened to overwhelm healthcare facilities in East Baton Rouge Parish, Louisiana. Exacerbating this problem was an overall shortage of diagnostic testing capability at that time, resulting in a delay in time-to-result return. An improvement in diagnostic testing availability and timeliness was necessary to improve the allocation of resources and ultimate throughput of patients. The management of a COVID-19 positive patient or patient under investigation requires infection control measures that can quickly consume personal protective equipment (PPE) stores and personnel available to treat these patients. Critical shortages of both PPE and personnel also negatively impact care in patients admitted with non-COVID-19 illnesses. METHODS: A multisectoral partnership of healthcare providers, facilities and academicians created a molecular diagnostic lab within an academic research facility dedicated to testing inpatients and healthcare personnel for SARS-CoV-2. The purpose of the laboratory was to provide a temporary solution to the East Baton Rouge Parish healthcare community until individual facilities were self-sustaining in testing capabilities. We describe the partnership and the impacts of this endeavor by developing a model derived from a combination of data sources, including electronic health records, hospital operations, and state and local resources. FINDINGS: Our model demonstrates two important principles: the impact of reduced turnaround times (TAT) on potential differences in inpatient population numbers for COVID-19 and savings in PPE attributed to the more rapid TAT.


Subject(s)
COVID-19 , Delivery of Health Care , Disease Outbreaks , Health Personnel , Inpatients , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/therapy , Female , Humans , Louisiana/epidemiology , Male , Patient Care , Personal Protective Equipment
SELECTION OF CITATIONS
SEARCH DETAIL
...